

Challenges for Deep Space Exploration 🐯

Communication

Environment Control & Life Supporting Systems

Power Generation & Storage

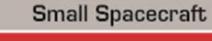
Logistics

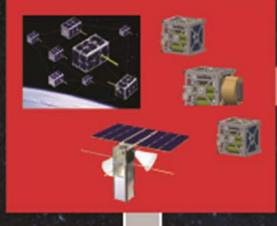
Navigation

Radiation Mitigation

Manufacturing In Space & For Space

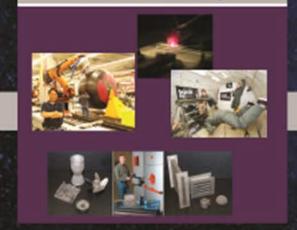
Propulsion




Entry, Descent & Landing

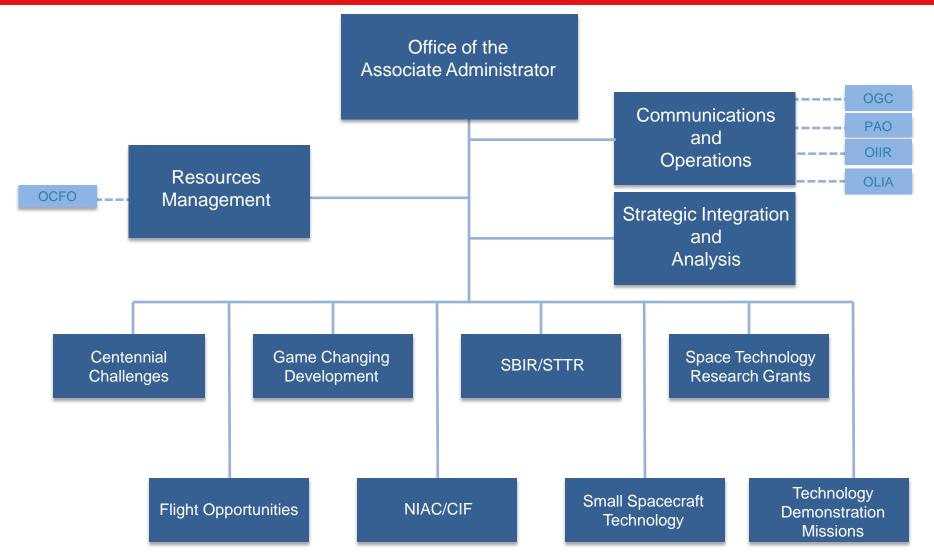
Trends in Space Technology

Entry, Descent & Landing


Propulsion

Robotics

Manufacturing



Communications

Space Technology Mission Directorate Organization

STMD Senior Leadership

Associate Administrator	Michael Gazarik	
Deputy Associate Administrator for Management	Dorothy Rasco	
Deputy Associate Administrator for Programs	James Reuther	
Director for Communications and Operations / Chief of Staff	G. Michael Green	
Director for Resource Management	Robert Carver	
Director for Strategic Integration and Analysis	Prasun Desai	
Senior Technical Officer	Harry Partridge	
Office Manager	Evelyn Vidal-Roles	
Executive Officer	Natalie Simms	1

Program Executives

Program	Program Executive
Center Innovation Fund & NIAC	Jay Falker
Centennial Challenges	Larry Cooper
Flight Opportunities	LK Kubendran
Game Changing Development Program	Tibor Balint
SBIR/STTR	Rich Leshner
Small Spacecraft Technology Program	Andy Petro
Space Technology Research Grants	Claudia Meyer
Technology Demonstration Missions	Randy Lillard

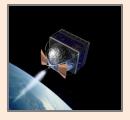
STMD FY 2014 President's Budget

	Budget Authority (\$M)					
		FY 2014	FY 2015	FY 2016	FY 2017	FY 2018
	FY 2014 President's Budget Request	743	743	743	743	743
OCT	Partnership Developments and Strategic Integration	34	34	34	35	35
ate	SBIR and STTR	186	192	200	212	212
Mission Directorate	Crosscutting Space Tech Development	278	256	213	241	244
ire(Early Stage Innovation	62	62	62	62	62
l D	Flight Opportunities	15	15	15	15	15
Sio	Small Spacecraft	17	17	17	17	17
Miss	Game Changing Development	76	73	68	70	71
Tech [Technology Demonstration Missions	107	89	51	77	79
le T	Exploration Technology Development	244	260	295	255	252
Space	Game Changing Development	70	74	79	83	83
	Technology Demonstration Missions	175	186	216	173	169

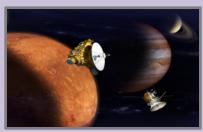
Space Technology Portfolio

Transformative & Crosscutting Technology Breakthroughs

Concepts/
Concepts/
Developing
Innovation


Creating Markets & Growing Innovation Economy

Game Changing
Development (ETD/CSTD)


Technology Demonstration Missions (ETD/CSTD)

Small Spacecraft Technologies (CSTD)

Space Technology Research Grant (CSTD)


NASA Innovative Advanced Concepts (NIAC) (CSTD)

Center Innovation Fund (CSTD)

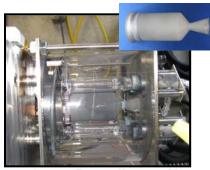
Centennial Challenges
Prize (CSTD)

Small Business Innovation Research & Small Business Technology Transfer (SBIR/STTR)

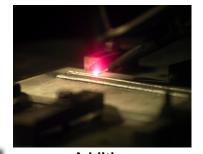
Flight Opportunities Program (CSTD)

New Hardware in Advancing Space Technology

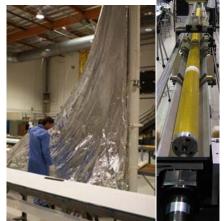
Cryogenic tank


Composite Strut Structural Testing

Low Density Supersonic Decelerator Proof Test


MSL heat shield with instrumentation

Green Propellant 22N thruster



Telerobotic Systems

Additive Manufacturing

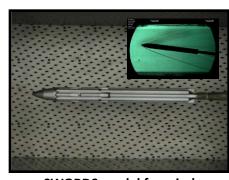
Solar Sail and Boom Fab

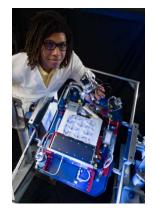
focal plane arrays

Inflatable Re-entry Vehicle **Experiment**

Exoskeleton

Game Changing Technology


X1 or Exoskeleton will improve life on Earth and in space


Arrival and testing of 2.4m precursor tank, the largest out-of-autoclave tank fabricated in the world

Space Power Systems First build of flight-like fuel cells

SWORDS model for wind tunnel testing at NASA MSFC

Next Gen Life Support Engineer Marlon Cox, with one of the Variable Oxygen Regulators

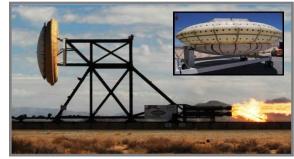
Launch of IRVE-3 – successful suborbital test of 3m HIAD

Successful test of a handsfree jet pack

Nuclear Systems delivered the Fission Power System Technology Demonstration Unit (TDU) Reactor Simulator

Technology Demonstration and Testing

Mike Fossum with Smart SPHERES checkout


R2 using air flow meter

Reduced Liquid Hydrogen boil off test

ARC Jet Testing

Low Density Supersonic Decelerator Sled Test

LCAT Stagnation Test (50 W/cm2)

MSL Launch and MEDLI measurements successfully completed

K10 rover deploying polyimide film

FY2014 Big Nine

Human

Missions

Science

Missions

Laser Communications

Cryogenic Propellant Storage & Transfer

Deep Space Atomic Clock

Large-Scale Solar Sail

TDM Low Density Supersonic Decelerators

Increases space-based broadband, delivering data rates 10-to-100 times faster than today's systems, addressing the demands of future missions.

This tiny atomic clock is 10-times more accurate than today's ground-based navigation system enabling precise, in-snar

TDM

Green Propellants

This solar sail has an area 7 times larger than ever flown in space, enabling propellant free propulsion and next generation space weather systems.

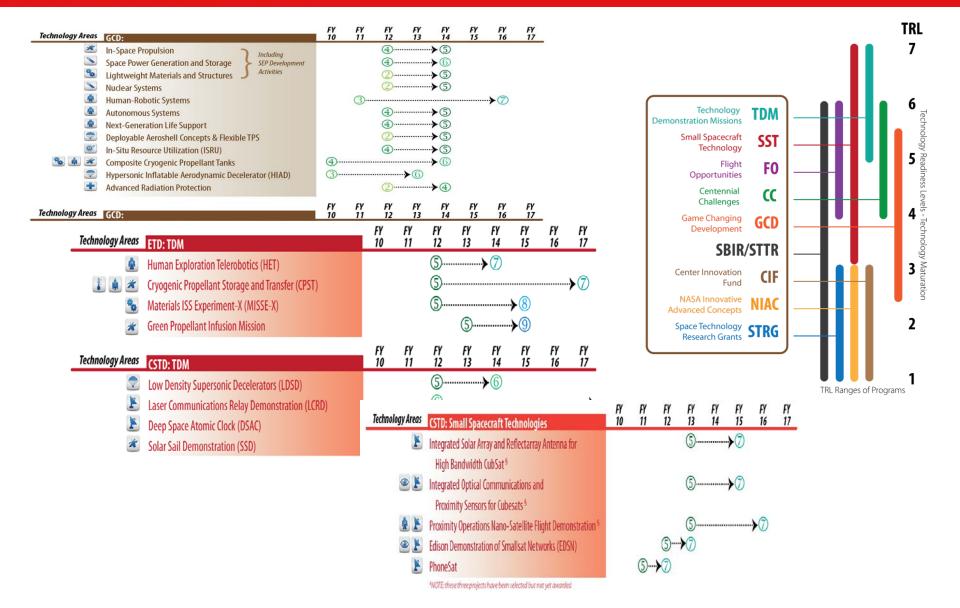
> Demonstrates new parachutes and inflatable braking systems at supersonic velocities enabling precise landing of large payloads on planetary surfaces.

Develops and demonstrates green propellants, thus provides an alternative to highly corrosive and toxic hydrazine; consequently expanding the capabilities of small spacecraft systems.

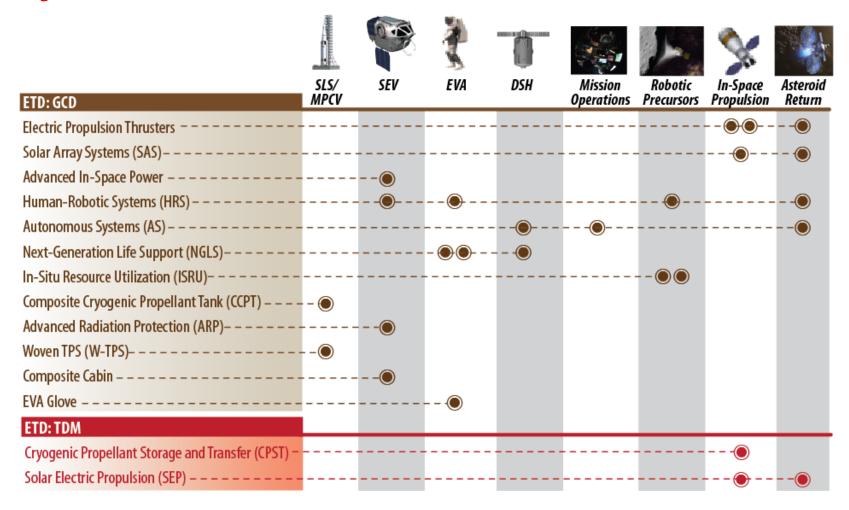
Simmummum • Developing advanced systems capable of remotely operating robots to assist in future exploration; maturing new robots capable of assisting humans in routine and tedious work.

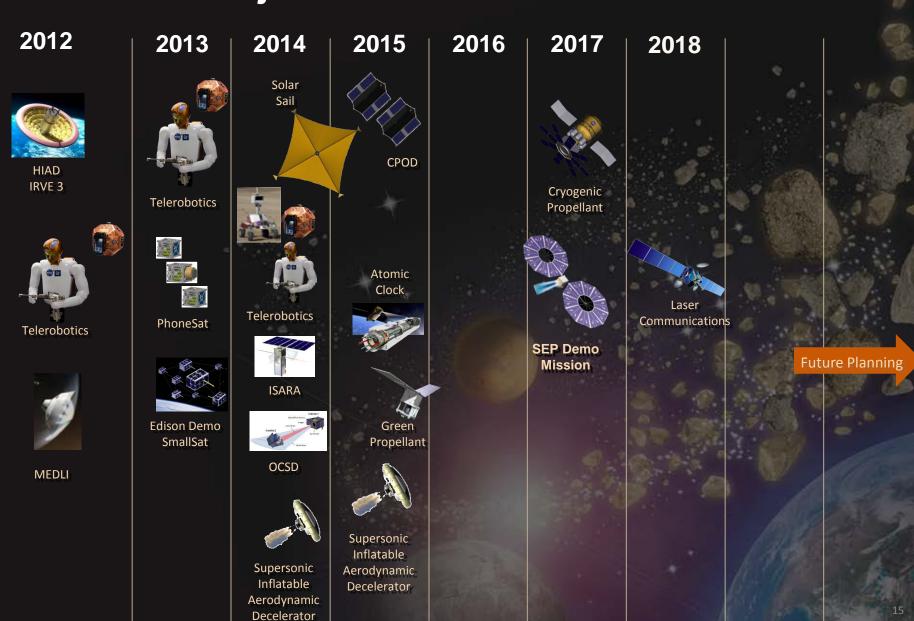
Zimminimini Develops large-scale solar array panels and deployment mechanisms. Critical step on the development path to a high-power solar electric propulsion system.

Demonstrating large composite, light weight fuel tanks that can reduce the mass and cost of the next generation SLS.


Human Exploration Telerobotics & Human-Robotic Systems

Portfolio Approach




Exploration Technology Development

Infusion

Space Technology Major Events & Milestones

Space Tech Role in Agency Asteroid Strategy

Early Stage programs will foster innovation regarding:

- Asteroid detection, characterization and mitigation for planetary defense and asteroid retrieval mission target selection
- Asteroid proximity operations and resource utilization techniques

Game Changing will complete high power SEP tech development:

- Advanced solar array systems
- Advanced magnetic shielded Hall thrusters
- Power processing units (PPUs)

Technology Demonstration Missions will develop, test and demonstrate the SEP system as part of the retrieval mission:

- 30kW 50 kW advanced solar arrays
- Magnetically shielded Hall thrusters & Power Processing
- Xenon propellant tanks

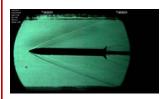
Additional Asteroid Retrieval funding in FY2014 will cover:

- Flight hardware solar array procurements
- Hall thruster engineering development units
- Design of Xenon propellant tanks

Alignment Strategy

Asteroid	2013 SST	2014 PS-2	2015	2016 GEO-hosted payload detection	2017	2018	2019	2020	2021	2022
Detection, Characterization & Selection Segment	Er	nhanced ground Initial candid		Final target selection						
Asteroid Redirection Segment	C	HANGE AS	MENITIM AL- SUBJEC MISSION C		Mission Launch & SEP Demo		Asteroid Rendezvous & Capture		Asteroid Maneuver to cis-lunar	
Orion & SLS Crewed Asteroid Exploration Segment	Fi	rst flight of Orion	Sensitive B	E out Unclassified * P	M-1: Un-crewe Orion test beyond the Moon RE-DECISIONAL* D				EM-2: Crev on Orion to the asteroi	

Collaborations with Other Government Agencies



Currently, significant engagements include:

- Green Propellant Infusion Mission partnership with Air Force Research Laboratory propellant and rideshare with DoD's Space Test Program (STP)
- Solar Sail Demonstration partnership with NOAA and rideshare with Air Force
- Soldier-Warfighter Operationally Responsive Deployer for Space (SWORDS) low-cost nano-launch system with **Army**
- ➤ UAS Airspace Operations Prize Challenge coordinated with FAA
- Working with the USAF Operationally Responsive Space Office (ORS) for launch accommodations for the Edison Demonstration of Smallsat Networks (EDSN) mission.
- Partnership for Ohio's first hydrogen generating fueling station with Greater Cleveland Regional Transit Authority to power city bus
- Partnership with **DARPA** on "Next Generation Humanoid for Disaster Response"
- ➤ In discussion with **Department of Veteran Affairs** for a collaborative project with "Exoskeleton" from our Human Robotics Systems Program

Working Together to Innovate

